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Lifshitz' Law for the Volume of a Two-Dimensional 
Droplet at Zero Temperature 
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We study a simple model of the zero-temperature stochastic dynamics for inter- 
faces in two dimensions----essentially Glauber dynamics of the two-dimensional 
Ising model at T= 0. Using elementary geometric considerations, we show that 
the (rescaled) volume of an initially square droplet decreases linearly to zero as 
a function of (rescaled) time. 
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1. I N T R O D U C T O R Y  R E M A R K S  

In the early 1960s, Lifshitz ~5) proposed that, for a multiple-phase system 
which has a droplet of one phase immersed in another,  the droplet radius 
R obeys the dynamical  equat ion 

d R  [cons t ]  

dt  R 
( l a )  

For  two dimensions, assuming the droplet to be roughly spherical, ( l a )  
may be expressed in terms of the volume V of the droplet as 

d V  
dt  - - [ c o n s t ]  ( l b )  
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In the ensuing years, there has not been any serious doubt about the 
validity of ( l ) - - a t  least for uniform systems. (For disordered systems, it is 
anticipated that the above will break down due to the "pinning of inter- 
faces. ''(2)) Recently, there have been some results that have pushed toward 
a rigorous understanding of Lifshitz' picture--at least in certain extreme 
cases. All of these, in one form or another, involve hydrodynamic limits. 
Thus, for a droplet of actual volume V~ N 2, the time is rescaled by N 2 
and one investigates, e.g., the limiting (stochastic) behavior of the quantity 
v(t) = ( 1/N 2) V(N2t). 

Foremost is the recent result of ref. 3. Here the Ising model is 
investigated in the limit of infinite range of coupling. In this limit, there is 
no sharp domain wall separating regions of opposite spin type. However, 
the boundary of a region may be defined via level curves and, in this sense, 
the laws (la) and ( lb)  can be demonstrated. Next, there is the work of 
Spohn 18) (see also ref. 7 and the derivation in ref. 6), where the zero- 
temperature dynamics of interfaces for nearest-neighbor Ising systems was 
shown, in the hydrodynamic limit, to follow motion by (modified) mean 
curvature. Such a rule for interface motion is the essence of the original 
derivation by Lifshitz. However, the setup required in ref. 8 was an 
infinitely tall cylinder, of girth N, divided into two infinite components 
("top" and "bottom") separated by a single interface. It was further 
assumed that the interface could be expressed as the graph of a function. 
Hence, in the hydrodynamic (N--* ~ )  limit, the long-time behavior results 
in the relaxation of the interface into a straight line. Evidently the work in 
ref. 8 does not address the issue of a droplet of one phase immersed in 
another. (Purportedly, the techniques of ref. 8 can be easily extended to 
handle these latter cases, but the authors of this note have no concept of 
how to go about making such an extension.) Finally, in the context of 
hydrodynamic limits for 1D particle systems with moving boundaries 
(Stefan's problem) a Lifshitz law--along with a shape reconstruction 
theorem---can be surmised for the case of an (immersed) droplet that is 
trapped against the corner of an infinite quadrant/~1 

Here we will present a straightfoward derivation of Lifshitz' law, in the 
form of Eq. ( 1 b), for a simple model of stochastic dynamics of two-dimen- 
sional interfaces. However, we will not address the delicate (and important) 
issue of the limiting dynamics for the motion of the interface itself. Never- 
theless, the fothcoming has a certain appeal due its simplicity. Further- 
more, it is distinguished from much of the above mentioned because it 
deals directly with the interface rather than an underlying particle system. 
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2. D E F I N I T I O N  O F  T H E  M O D E L  

The interface in our model is defined as a closed, self-avoiding path 
along the bonds of Z 2. The interface configuration at time t will be denoted 
by I(t) and its length by [I(t)l. This interface may be envisioned as sepa- 
rating regions, of Ising spins--here sitting on the dual lattice--that are of 
opposite type. Thus, in the case of a "droplet," the minority species is a 
simply connected cluster and I(t) is its boundary. For the purposes of this 
paper, the initial condition will always be rectangular. Let x be a dual site 
and let i.,. denote the four bonds that surround x. The sites of interest are 
those x's for which i~ meets/ ,  i.e., those sites in the cluster with a neighbor 
outside the cluster or vice versa. Then, formally, we can add or delete x 
from the cluster by saying that 

I ~  I o  i.,. 

where Ioi. , .=Iw[~\Ini,.  is the symmetric difference operator. 
dynamics is defined by the rules that for all x (of interest), 

(2) 

The 

{ 0 if Iloixl > I11 

I---,Ioi,. a t ra te  1 if [ Ioixl=l l I  (3a) 
�9 i f  I:oi,.I = I:1 - 2  

i f  I loi , . I  = 1 I I - 4  

subject to the restriction that (for I #  ix) 

Ioix is a simple closed curve (3b) 

The above constitutes a simple model of stochastic interfacial dynamics 
that is governed by local rules. The various allowed and forbidden moves 
are illustrated in Fig. 1. 

Sallowed 
rate two) 

A.owed 
(rate one) Forbidden Forb dden 

i .... 

I 

Fig. 1 
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Remark .  The rate for the transition where I reduces by 4 is sheer self- 
indulgence, since in any realization, there is only one such move and this 
move marks the end of the process. The restriction (3b) sounds serious, but 
is probably not of any real significance for the initial configurations that we 
will consider. In general, this restriction forbids the fissioning of droplets. 
If the initial condition is a rectangle, it turns out that under the dynamics 
described in Eq. (3a), the only mechanism for splitting is when a finger of 
width one gets sliced off. Such fingers are probably rare enough to begin 
with and, evidently, are extremely short-lived. Relaxation of the rule (3b) 
would serve to further shorten the lifetime of a finger; however, it would 
also cause spurious complications, and hence lengthen our derivation. It is 
seen that, aside from this restriction (and the defined rate at the terminus), 
the model we are studying is a standard version of Glauber dynamics 
(know as Gibbs sampler) with a flip rate of 2, at zero temperature. 

3. RESULTS AND DERIVATIONS 

We start with the following observation: Traversing the curve I(t) in 
the positive (counterclockwise) direction, let P(t) denote the number of 
left-handed turns and Q(t) the number of right-hand turns. Since l(t) is, 
after all, a simple closed curve, it follows that the total rotation of the 
tangent is 2re. Since each left-handed turn is an increment of re/4 and each 
right-handed turn -re/4, it follows that for any time II(t)[ > 0, 

P(t ) -  O(t)=4 (4) 

The above leads immediately to the following: 

Proposition 1. Let V(t) denote the dynamic volume (area) of the 
interface I(t). Then, provided that the process has not terminated, the 
average rate of change of the volume is a constant. Explicitly: 

. J  

"---E(V(t+s) l I ( t ) ; d s  V(t) > O) ~ = o 

E(V(t +6t) [ I(t); V(t) > 0 ) -  V(t) 
- lim 

~, - o 6 t  

is exactly equal to - 4 .  

Proof. The above is obvious if [II =4 ,  so let us assume otherwise. 
Moving around the curve in a positive direction, we claim that each left- 
handed turn that is not immediately preceded by or followed by another 
left-handed turn represents an "outward-pointing corner" that could be 
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potentially lost in an I/I-preserving move. These moves will then decrease 
the volume V(t) by one and happen at rate one. The above sentence can 
be checked, locally, by exhausting all 4 (or, to be precise, 16) cases. 
Assume, without loss of generality, that we start walking vertically up the 
page from the site st ~ s2 and then we move horizontally from s2 to s3 
as illustrated in Fig. 2. Acceding to the stipulation that we have not 
immediately come out of nor will immediately go into another left-handed 
turn, the possible candidates for the sites preceding and following the path 
( S I ,  $ 2 ,  $ 3 )  are, respectively, s o or s~ and s4 or s~ as illustrated. Since the 
droplet region (shaded) by definition lies to the left of (st, s2) the validity 
of the above statement is manifest. 

Similarly, if there are two successive left turns, this corresponds to a 
"protuberance" which permits an II1--* [ I I - 2  move and these happen at 
rate 2. By this convention, it follows that each left-handed turn contributes 
equally to the erosion of the volume. A similar argument shows that each 
right-handed turn contributes equally to the possibility of increasing the 
volume of the droplet and, clearly, a region with no turns remains just that. 
Evidently, we have shown 

Prob(V( t+~ t )=  V ( t ) + l  I I(t); V ( t ) > O ) = P ( t ) ~ t + O ( [ 6 t ]  z) (5a) 

and 

Prob( V(t + 6t) = V(t) - 1 J I(t); V(t) > O) = Q(t) c~t + O([6t] 2) (5b) 

from which the result follows. 

Remark. The preceding is already a (very) weak form of the Lifshitz 
law in the sense that it indicates a linear loss of volume with time. There 
are, however, two major issues that must be dealt with: First there is the 

�9 ~ �9 s~ 

$4 ;jLS3 
0 . . . . . .  - -  
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. . . . . . .  " 0  
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fact that  the s tatement  in Proposi t ion 1 pertains to the derivative of a con- 
ditional probability; we must  remove this conditioning. Second, we must  
control  the fluctuations. For  example,  if we consider a process X, on 7/+ 
with transition rates X, ~ X, + 1 at rate X, + 1 and X, -~ [ X, - 1 ] + at rate 
X,, it is easy to show that E ( X , ) ~  t. However,  it is also the case that  
Var(X,) ~ t 2, SO in this example the statement X, ~ t would be unrealistic. 
In our case, we can show that  the s tandard deviation is small relative to 
the mean and thus a meaningful Lifshitz law will be established. 

T h e o r e m  1. Let IN(t) denote the interface at time t corresponding 
to an initial configuration I(0) that  is an N x 2 N  rectangle. Let VN(t) 
denote the dynamic volume and vu(t) the rescaled volume as a function of 
rescaled time: 

VN(N2t) 
vu(t) 

Vu(O) 

Then, for any t < ~ ,  vN(t) --* v(t), in L 2, where 

~1 --4t;  t ~< 1/4 
v(t) = [0;  t >/1/4 

Proof. It  is more  convenient to deal with the eroded volume 

AN(t) = V u ( 0 ) -  VN(t) (6) 

The result of the previous proposi t ion amounts  to the statement that for 
all t 

d E(AN(t .,.=o + s )  [ IN(t); ZIN(t) < V N ( 0 ) )  = 4  (7) 

and an easy calculation based on Eqs. (5a) and (5b) shows that 

d 
"" E(A~(t  + s )  I IN(t); AN(t) < VN(0)) = 8AN(t) + [PN(t )  + QN(t)]  (8) 
ds 

Equation (8) is clearly the key: neglecting again the problem of condi- 
tioning, the first term is exactly what is expected if A(t) .~ 4t and, obviously,  
one anticipates that A ~> P + Q. 

We will now dispense with the annoyance caused by the conditioning. 
Let zN denote the stopping time defined by 

VN=sup{tIAN(t) < Vu(0)} (9) 
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and let us define 

Du(t)= ~ AN(t); 
[ Vu(O) + 4 ( t -  ru); 

827 

t < T  N 
(10) 

t > z  N 

We see that Eqs. (7) and (8) can be replaced with the more palatable 

dE(oN(t+s)  l l N ( t ) ) d s  s=o = 4  ( l l a )  

(i.e., DN(t)--4t is a martingale) and 

d D ~ Iv(t)) .~=o ~ssE( 7v(t + s )  [ =8DN(t)+[PN(t)+QN(t)] ( l l b )  

where, of course, PN(t) + QN(t) =-- 0 when t > rN. Note that we can revert 
back to the original variables by the identity 

VN(t) = [ VN(0) -- Du( t ) ]  + (12a) 

or, defining dN(t) = DN(t)/VN(O), 

VN(t) = [1 -- dN(t)] + (12b) 

Henceforth, we will work with the d-type variables. 
We now claim that in every configuration, 

Pu(t)+Qu(t)<~4{[2AN(t)]'/2+l} <~4{[ZDu(t)]'/2+l} (13) 

Indeed, examining Fig. 3, we may define the current box containing the 
droplet by the extreme points on the right side, R and R', the left, L and 
L', etc. We make a few elementary observations which, due to the initial 
condition, are true at t = 0 and thereafter are dynamically enforced. 

I. All bonds in the line segment RR' are in L 

2-4. Similarly for LL', BB', and TT'. 
5. In portion I between T and R', the P- and Q-type corners alter- 

nate starting and ending with P-type corners at T and R' (i.e., in this 
region, I can be. represented as the graph of a function). 

6-8. Similarly for B' and R, L' and B, and T '  and L. 

Properties 1-8 are easily checked. 
We denote by Q~I.sj ..... Q[N Tz]  the number of Q-type corners in the 

respective portions of IN between L'  and B ..... T '  and L, and by 
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Fig. 3 

AtLSl  dtu rz'l the amount that has "eroded" from each of these four 
N ' " ' ~  

comers (see Fig. 3a). Let us examine, e.g., the lower left comer region 
(between L' and B; see Fig. 3b). As is clear from the figure, 

zl rut-s1 = bt hi + b~h2 + " .  + b~t,alh,~v-sl (14) 

where the b's are the distances between successive P-type comers and the 
h's represent the corresponding vertical drops. 
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Since each b,/> 1 and each h k i> h ,+ i "q- 1, we see that 

z~[LB] ~.~ I [ [ ' ) [LB]~[  It')[LB ] 
N : '~_~r~N Ikk~N +I) (15) 

Thus, collecting the contributions from al four corners, and noting that 
2(AN)m >~ (JtNLB1)~/Z + "'" + (AtNrL~) m, we arrive at 

4(2AN) 1/2 + 4/> QN + PN (16) 

as promised. 
Substituting the bound in Eq. (16) into Eq. ( l i b )  and integrating from 

t t o  t + J t ,  wege t  

E(DN(t+Jt)) - -D2N(t)<~{8DN(t)+4[2DN(t)]U2+4} J t+O(IJ t l  2) (17) 

(Notice that due to the use of the DN instead of the /IN there is no issue 
with the condition t >/rN versus t ~< rN--although the right-hand side of 
Eq. (17) is still random.) Averaging Eq. (17) up to time t and then dividing 
by 6t, we obtain 

d E(D~v(t) ) ~< 8E(DN(t)) + 4E[2DN(t)] 1/2 + 4 
dt 

~< (8)(4) t + c i N / / ~  --~ - c 2 (18) 

where c~ and c2 are constants of order unity. Integrating Eq. (I 8), we find 

E [ D ~ ( t ) ]  - [EDN(t)]  2 ~< ct 3/2 (19) 

where c is a constant of order unity. Thus we obtain, for any t < oo, 

d N (  t )  ~ 4t (20) 

in L z. The stated result follows from Eq. (12b). | 

Our results can now be summarized by the following statement: 

T h e o r e m  2. Let vu(t) and v(t) be as described in the statement 
of Theorem 1, with the vN(t) taken to be right continuous. Then 
sup, Ivu(t) - v(t)l --* 0 in probability. Explicitly, for any e, 

? 
Prob[sup Ivu(t) - v(t)] > e] ~< e2 N 

with ~ a constant of the order of unity. Furthermore, r ~  1/4, in proba- 
bility, with a similar estimate on the rate of convergence. 
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Proof. As mentioned previously, DN(t)--4t is a mart ingale  and 
hence so is dN(t ) -  4t. Consider the process on [0, 1 ] - - w h e r e  we note that  
t = 1 is well past  the anticipated stopping t i m e - - a n d  let e ,~ 1. For  discrete 
times t I ..., tk, to = 0, tk = 1, Doob ' s  inequality gives us 

P r o b [ m a x  IdN(tj)--4tl > e l  ~< [E(du(tk)--4tk)2] <~e~ 
j~<k 

(21) 

where ? is a constant  of  the order of  unity. 
By a straightforward argument ,  (see, e.g., ref. 4, 244), Eq. (21) can be 

extended to any countable dense subset of  [0, 1 ]. Since, with probabil i ty 
one, dN(t) has only a finite number  of  jumps  on any finite interval, this 
implies 

? 
P r o b [ s u p  IdN(t) -- 4t[ > e] <~ e2 N (22) 

t~<l 

Thus, if N is large, dN(t) is confined to a small window, as ilustrated in 
Fig. 4. Moreover ,  under these circumstances, at t = 1, dN is certainty greater 
than one and we are well past  the stopping time rN: once past this s topping 

1 

Fig. 4 
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time the difference dN(t)--4t is a constant, here bounded by e. Hence 
Eq. (22) may be replaced with 

Prob[sup, IdN(t)--4tl > e] ~< e2 N (23) 

Comparing the paths of dN(t) and fiN(t)=ZJN(N2t)/VN(O), it is clear 
that the above implies 6N(t)~max{4t, 1} and r u ~  1/4, in probability, 
with similar estimates on the rates of convergence. I 
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